Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Diagnostics (Basel) ; 12(10)2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2065751

ABSTRACT

Background: Since December 2019, SARS-CoV-2 has been causing cases of severe pneumonia in China and has spread all over the world, putting great pressure on health systems. Nasopharyngeal swab (NPS) sensitivity is suboptimal. When the SARS-CoV-2 infection is suspected despite negative NPSs, other tests may help to rule out the infection. Objectives: To evaluate the yield of the lower respiratory tract (LRT) isolation of SARS-CoV-2. To evaluate the correlations between SARS-CoV-2 detection and clinical symptoms, and laboratory values and RSNA CT review scores in suspect patients after two negative NPSs. To assess the safety of bronchoscopy in this scenario. Method: A retrospective analysis of data from LRT sampling (blind nasotracheal aspiration or bronchial washing) for suspected COVID-19 after two negative NPS. Chest CT scans were reviewed by two radiologists using the RSNA imaging classification. Results: SARS-CoV-2 was detected in 14/99 patients (14.1%). A correlation was found between SARS-CoV2 detection on the LRT and the presence of a cough as well as with typical CT features. Typical CT resulted in 57.1% sensitivity, 80.8% accuracy and 92.3% NPV. Neither severe complications nor infections in the personnel were reported. Conclusions: In suspect cases after two negative swabs, CT scan revision can help to rule out COVID-19. In selected cases, with consistent CT features above all, LRT sampling can be of help in confirming COVID-19.

2.
Healthcare (Basel) ; 10(9)2022 Sep 14.
Article in English | MEDLINE | ID: covidwho-2043652

ABSTRACT

PURPOSE: The workload of the radiology department (RD) of a university hospital in northern Italy dramatically changed during the COVID-19 outbreak. The restrictive measures of the COVID-19 pandemic lockdown influenced the use of radiological services and particularly in the emergency department (ED). METHODS: Data on diagnostic services from March 2020 to May 2020 were retrospectively collected and analysed in aggregate form and compared with those of the same timeframe in the previous year. Data were sorted by patient type in the following categories: inpatients, outpatients, and ED patients; the latter divided in "traumatic" and "not traumatic" cases. RESULTS: Compared to 2019, 6449 fewer patients (-32.6%) were assisted in the RD. This decrease was more pronounced for the emergency radiology unit (ERU) (-41%) compared to the general radiology unit (-25.7%). The proportion of investigations performed for trauma appeared to decrease significantly from 14.8% to 12.5% during the COVID-19 emergency (p < 0.001). Similarly, the proportion of assisted traumatic patients decreased from 16.6% to 12.5% (p < 0.001). The number of emergency patients assisted by the RD was significantly reduced from 45% during routine activity to 39.4% in the COVID-19 outbreak (p < 0.001). CONCLUSION: The COVID-19 outbreak had a tremendous impact on all radiology activities. We documented a drastic reduction in total imaging volume compared to 2019 because of both the pandemic and the lockdown. In this context, investigations performed for trauma showed a substantial decrease.

3.
Microorganisms ; 10(8)2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-1987896

ABSTRACT

Background: Since 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic (COVID-19) has caused millions of deaths worldwide and is the second most serious pandemic after the Spanish flu. Despite SARS-CoV-2 infection having a dominant effect on morbidity and life-threatening outcomes, the role of bacterial co-infection in patients with COVID-19 is poorly understood. The present study aimed to verify the existence of bacterial co-infections and their possible role as cofactors worsening COVID-19-related clinical manifestations. Methods: All patients with suspected SARS-CoV-infection, hospitalised in COVID-19 wards at the Sant'Anna University Hospital of Ferrara, were retrospectively included in this single-centre study and their specific bacterial serologies were assessed. Univariate and logistic regression analyses were performed. Results: A total of 1204 individual records were retrieved. Among them, 959 were excluded because of a negative nasopharyngeal swab or missing data; of the eligible 245 patients, 51 were co-infected. Compared to patients with SARS-CoV-2 infection alone, those with Chlamydia pneumoniae or Mycoplasma pneumoniae co-infections had worse respiratory/radiological features and more intensive care unit admissions. However, the co-infection did not result in a higher mortality rate. Conclusions: The present study, comparing clinical, laboratory and radiological findings between patients with COVID-19 vs. those with co-infections (C. pneumoniae or M. pneumoniae) showed that, on admission, these features were worse in co-infected patients, although the mortality rate did not differ between the two groups.

4.
Radiol Med ; 127(2): 162-173, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1626023

ABSTRACT

PURPOSE: COVID-19-related acute respiratory distress syndrome (ARDS) is characterized by the presence of signs of microvascular involvement at the CT scan, such as the vascular tree in bud (TIB) and the vascular enlargement pattern (VEP). Recent evidence suggests that TIB could be associated with an increased duration of invasive mechanical ventilation (IMV) and intensive care unit (ICU) stay. The primary objective of this study was to evaluate whether microvascular involvement signs could have a prognostic significance concerning liberation from IMV. MATERIAL AND METHODS: All the COVID-19 patients requiring IMV admitted to 16 Italian ICUs and having a lung CT scan recorded within 3 days from intubation were enrolled in this secondary analysis. Radiologic, clinical and biochemical data were collected. RESULTS: A total of 139 patients affected by COVID-19 related ARDS were enrolled. After grouping based on TIB or VEP detection, we found no differences in terms of duration of IMV and mortality. Extension of VEP and TIB was significantly correlated with ground-glass opacities (GGOs) and crazy paving pattern extension. A parenchymal extent over 50% of GGO and crazy paving pattern was more frequently observed among non-survivors, while a VEP and TIB extent involving 3 or more lobes was significantly more frequent in non-responders to prone positioning. CONCLUSIONS: The presence of early CT scan signs of microvascular involvement in COVID-19 patients does not appear to be associated with differences in duration of IMV and mortality. However, patients with a high extension of VEP and TIB may have a reduced oxygenation response to prone positioning. TRIAL REGISTRATION: NCT04411459.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/therapy , Microvessels/diagnostic imaging , Respiration, Artificial/methods , Tomography, X-Ray Computed/methods , Aged , Female , Humans , Intensive Care Units , Italy , Length of Stay/statistics & numerical data , Lung/diagnostic imaging , Male , Middle Aged , Prospective Studies , SARS-CoV-2
5.
Life (Basel) ; 11(1)2020 Dec 25.
Article in English | MEDLINE | ID: covidwho-1000307

ABSTRACT

BACKGROUND: Data in the literature report that a number of studies have attempted to identify the exact location of the cortical olfaction representation, searching for evidence suggesting that sniffing odors can initiate a primary activation of the piriform cortex and the insula. Nowadays, due to the SARS-CoV-2 (COVID-19) outbreak, the functional study of the olfactory system could offer a better understanding of the physiopathology of olfactory perception, elucidating better the possible site(s) of damage induced by the COVID-19 infection. The aim of this paper was to evaluate brain maps generated from functional Magnetic Resonance Imaging (fMRI) data, collected from healthy individuals in response to the same olfactory stimulus. METHODS: A total of 45 healthy volunteers, without history and/or no clinical signs of sinonasal disease and without history and/or presence of olfactory dysfunction underwent fMRI assessment. Subjects were presented with the same odorous stimuli at specific intervals. fMRI generated brain maps were used in the identification of different cortical areas, involved in the stimuli perception. RESULTS: The fMRI brain maps showed that odorous stimuli activate primarily the left anterior insula (in 35/45 cases or 77.8%). Other activated areas include: the low temporal gyri, the middle and superior temporal gyri, the frontal and piriform cortex, the anterior cingulate gyrus, the parahippocampal gyrus, the temporopolar area, the para-insular area, the subcentral area, the supramarginal gyrus, the occipital cortex and the cerebellum. CONCLUSIONS: fMRI resulted as a safe and reliable means to study the perception of olfaction in the cortex. The data of this study suggest that the anterior insula is the main stimulated area when olfactory stimuli are present. This area is always activated, despite the hand and nostril dominance.

SELECTION OF CITATIONS
SEARCH DETAIL